第三百五十章 搞定毕业论文(1/2)

我们马上记住本站网址,www.chongshengxs.com,若被浏/览/器/转/码,可退出转/码继续阅读,感谢支持.

350章

另一边,华国。

经过一夜的思考,困惑程诺终于对自己的毕业论文有了新的思路。

关于两个引理的运用,程诺有他自己独到的见解。

所以,这天白天的课一结束,程诺便匆匆赶到图书馆,随便挑了一个没人的位置,拿出纸笔,验证自己的想法。

既然将两个引理强加进 Bertrand 假设的证明过程中这个方向行不通,那程诺想的是,能否根据这两个引理,得出几个推论,然后再应用到 Bertrand 假设中。

这样的话,虽然拐了个弯,看似比切比雪夫的方法还要麻烦不少。但在真正的结果出来之前,谁也不敢百分百就这样说。

程诺觉得还是应该尝试一下。

工具早已备好,他沉吟了一阵,开始在草稿纸上做各种尝试。

他有不是上帝,并不能很明确的知晓通过引理得出来的推论究竟哪个有用,哪个没用。最稳妥的方法,就是一一尝试。

反正时间足够,程诺并不着急。

唰唰唰~~

低着头,他列下一行行算式。

【设 m 为满足 pm ≤ 2n 的最大自然数,则显然对于 i > m, floor(2n/pi)- 2floor(n/pi)= 0 - 0 = 0,求和止于 i = m,共计 m 项。由于 floor(2x)- 2floor(x)≤ 1,因此这 m 项中的每一项不是 0 就是 1……】

由上,得推论1:【设 n 为一自然数, p 为一素数,则能整除(2n)!/(n!n!)的 p 的最高幂次为: s =Σi≥1 [floor(2n/pi)- 2floor(n/pi)]。】

【因为 n ≥ 3 及 2n/3 < p ≤ n 表明 p2 > 2n,求和只有 i = 1 一项,即: s = floor(2n/p)- 2floor(n/p)。由于 2n/3 < p ≤ n 还表明 1 ≤ n/p < 3/2,因此 s = floor(2n/p)- 2floor(n/p)= 2 - 2 = 0。】

由此,得推论2:【设 n ≥ 3 为一自然数, p 为一素数, s 为能整除(2n)!/(n!n!)的 p 的最高幂次,则:(a) ps ≤ 2n;(b)若 p >√2n,则 s ≤ 1;(c)若 2n/3 < p ≤ n,则 s = 0。】

一行行,一列列。

除了上课,程诺一整天都泡在图书馆里。

等到晚上十点闭馆的时候,程诺才背着书包依依不舍的离开。

而在他手中拿着的草稿纸上,已经密密麻麻的列着十几个推论。

这是他劳动一天的成果。

明天程诺的工作,就是从这十几个推论中,寻找出对Bertrand 假设证明工作有用的推论。

…………

一夜无话。

翌日,又是阳光明媚,春暖花开的一天。

日期是三月初,方教授给程诺的一个月假期还剩十多天的时间。

程诺又足够的时间去浪……哦,不,是去完善他的毕业论文。

论文的进度按照程诺规划的方案进行,这一天,他从推导出的十几个推论中寻找出证明 Bertrand 假设有重要作用的五个推论。

结束了这忙碌的一天,第二天,程诺便马不停蹄的开始正式Bertrand 假设的证明。

这可不是个轻松的工作。

程诺没有多大把握能一天的时间搞定。

可一句古话说的好,一鼓作气,再而衰,三而竭。如今势头正足,最好一天拿下。

这个时候,程诺不得不再次准备开启修仙大法。

而修仙神器,“肾宝”,程诺也早已准备完毕。

肝吧,少年!

程诺右手碳素笔,左手肾宝,开始攻克最后一道难关。

切尔雪夫在证明Bertrand 假设时,采取的方案是直接进行已知定理进行硬性推导,丝毫没有任何技巧性可言。

本章节未完,点击这里继续阅读下一页(1/2)